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RT-Middleware[Ando IROS05]

• http://www.openrtm.org
• RT = Robot Technology
• A software platform to develop RT system 

as a network of software components (RT-
component, RTC)

• OpenRTM-aist is one of implementations
• RT components can be deployed on a 

computer network 
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Component execution in RTM/ROS
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Combination of execution contexts and 
RTCs

One EC and one RTC
（default）

RTC

One EC and multiple RTCs
Sequential execution of RTCs

ex）image processing

RTCRTC

Multiple ECs and one RTC
Parallel execution using shared data

ex）short cycle control and long cycle visualization

RTC



process

Real-time/composite execution

• ROS: 1-node = 1-process
– Sequential execution, close coupled composition are impossible
– Some tools such as ros_control, realtime-tools can supports such 

requirement
– However, node must be designed different way from normal ROS node
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New communication features
• Topic connection

– DDS, ROS like connection scheme
– Topics are registered and matched 

on naming servers
• Direct connection

– OutPort directly write into InPort’s
variable

– Two RTCs must be in a same 
process

– Thread-safe implementation. 
Execution context isn't necessarily 
shared RTCs

• Shared memory connection
– Same node, but different 

process/language RTCs can 
communicate.

– Marshalled data are stored/read 
into/from shared memory area.
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ROS2 node

Other features
• Master-slave manager

– Master: Frontend 
process to application, 
slave management

– Slave: It actually hosts 
RTCs.

• Secure communication 
(SSL)
– CORBA’s SSL features 

are used
• DDS port 

implementation will be 
included
– ROS2 compatibility 

might be realized

CORBA comm.

Raw TCP Socket

Direct

Shmem.

DDS communication port

RTC RTC RTC RTC RTC

RTC directory query
RTC launch command

RTC reg. by slave
Launching slave

RTC launch
RTC search

Master manager

Slave manager Slave manager Slave manager

ポート番号固定 :2810 番

ポート番号任意 ポート番号任意 ポート番号任意



Choreonoid[Nakaoka SII12]

• www.choreonoid.org
• Windows and Linux are supported
• Open source software（MIT license）

• Basic functions to handle robot models are 
included

• Dynamics simulator is embedded
• Users can extend by developing/adding plugins
• Lightweight and efficient single process 

architecture

Choreonoid is an extensible framework for robot 
applications.



Use cases of Choreonoid

1. Robot world simulator
The official simulator of JVRC 
(Japan Virtual Robotics Challenge)

2. Teleoperation interface
User interface for supervised 
autonomy used at DRC Finals

3. Robot choreographer
CG software-like interface and 
automatic balance compensation



Choreonoid as a simulator
• Joints

– Free, fixed, rotate, slide
• Sensors

– Force/torque sensor, gyrometer, 
accelerometer, camera, RGBD 
camera, range finder

• Shape description
– VRML97, COLLADA, STL

• Middleware
– RTM, ROS

• Physics engines
– AIST, ODE, PhysX, AgX, Bullet

• Not implemented
– Deformable objects, cable, aerial 

robots, radio wave, sound, …



Choreonoid as a User Interface

• Markers
– Walk destination marker
– Body part marker
– Manipulation marker
– Measurement marker

• Task sequence system
– Task description by 

Python



Example: turning a valve
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Continuous Integration using dynamics 
simulation

update

DeveloperVersion control

polling

Continuous integration tool

E-mail

movieWeb page
Log and screenshot



Summary page of test results

build results on
different OSs

task execution 
results

Latest 10 test results

Link



History page of test results

Link to a movie on YouTube

Link to a build log and a screenshot on Google Drive

Link to GitHub pages
Link



Links

• Choreonoid
http://www.choreonoid.org

• OpenRTM-aist
http://www.openrtm.org


