
Software development 
environment for HRP series

Fumio Kanehiro (AIST)



Outline

1. Overview
2. Software platforms

a. RT-Middleware
b. Choreonoid

3. Continuous integration using dynamics 
simulation



Robot Hardware

Whole-body motion 
controller

Footstep 
Planner

Landing State 
Estimator

Object 
Detector

Standing up 
motion generator

3D Laser 
Scanner

Statistical 
Outlier 

Removal Filter

Moving Least 
Square Filter

Reaching 
Motion Planner

Graphical User 
Interface

Real Time Layer1 
(joint level, period=1ms)

Real Time Layer2 
(whole body level, period=2ms)

Data Logger

Joint Servo

Posture 
Generator

Model 
Remover

Standing 
position Planner

Resize 
Image

Undistort 
Image

Balance Control
Biped walking 

pattern generator

Prioritized 
Inverse 

Kinematic
s Solver

Impedance Control

Image Grabber

Sensor 
signals

Joint position 
commands

Point cloud pipeline

Image pipeline

Planned footsteps
whole-body 

motions

Current robot 
state

Motion Planners

plans
Processed images
Processed point 

cloud

Walk destination
End-effector 

position/orientation
Object motion

Attitude 
Estimator

User interface Layer 
(sporadic)

Non-real Time Layer 
(period=100ms)

Object detection
Environment mapping

Occupancy 
3D Grid Map



Layer1: Joint Level Control

Layer2: Whole Body Level Control

Shared Memory

Physical location and communication 
between layers

Layer3: Perception and Planning

Layer4: User Interface

TCP/IP

TCP/IP

External computers

Onboard computers
TCP/IP



Robot Hardware

Whole-body motion 
controller

Footstep 
Planner

Landing State 
Estimator

Object 
Detector

Standing up 
motion generator

3D Laser 
Scanner

Statistical 
Outlier 

Removal Filter

Moving Least 
Square Filter

Reaching 
Motion Planner

Graphical User 
Interface

Real Time Layer1 
(joint level, period=1ms)

Real Time Layer2 
(whole body level, period=2ms)

Data Logger

Joint Servo

Posture 
Generator

Model 
Remover

Standing 
position Planner

Resize 
Image

Undistort 
Image

Balance Control
Biped walking 

pattern generator

Prioritized 
Inverse 

Kinematic
s Solver

Impedance Control

Image Grabber

Sensor 
signals

Joint position 
commands

Point cloud pipeline

Image pipeline

Planned footsteps
whole-body 

motions

Current robot 
state

Motion Planners

plans
Processed images
Processed point 

cloud

Walk destination
End-effector 

position/orientation
Object motion

Attitude 
Estimator

User interface Layer 
(sporadic)

Non-real Time Layer 
(period=100ms)

Object detection
Environment mapping

Occupancy 
3D Grid Map

Real-time OS 
(RT-Preempt Linux) Simulator (Choreonoid)

User Interface (Choreonoid)

Middleware (RT-Middleware)



RT-Middleware[Ando IROS05]

• http://www.openrtm.org
• RT = Robot Technology
• A software platform to develop RT system 

as a network of software components (RT-
component, RTC)

• OpenRTM-aist is one of implementations
• RT components can be deployed on a 

computer network 



SDO Interfaces RTC Interfaces

Activity

RT-Component

InPort

InPort OutPort

OutPort

Buffer Buffer

BufferBuffer

Provider

ProviderProvider

ProvideRequire, consume

Service portsService ports

Receive

read write

Transmit

Data portsData ports

Inactive Active

Error

Created State 
machine

use

Interfaces to get metadata, state, configuration etc.

Consumer

Consumer Consumer

Execution context
Execution

RT-Component Architecture

Encoder
component

Actuator
Component

Controller
Component

1
TI s
TDs

Kp+
-

Referencepos

pos

torque

• Data centric communication
• Continuous data transfer
• Dynamic connection/disconnection

Data-centric communication

Data Port

Ex. Servo control

• User defined interface
• Access to detailed functionality of RTC

– Getting/setting parameters
– Changing modes
– etc…

Image
data

3D depth
data

Stereo vision
interface

・set_mode()
・set_coordination()
・do_calib()
・etc…

Service port

Stereo Vision
Component

Data port

Service oriented interaction

Service Port

Ex. Stereo vision

Name

Value
Set name

Name

Value
Set name

• Function for internal parameter
• Multiple parameter sets
• They can be changed from remote in run-time

Configuration

RTC can have several
configuration sets.
Runtime reconfiguration
and dynamic switching
are supported

Inactive Active

Error

State machine

Activity, Execution context

Init

onInitialize()

onFinalize()

onActivated()

onDeactivated()

onExecute()

onReset()

onAborting()

Execution Context



Component execution in RTM/ROS

8

Non-real-time
EC (Execution Context)

Real-time EC Ext. trigger EC
Execute by time Execute in real-time Execute by external trigger

Business 
logic

Business 
logic

Business 
logic

RTC RTC RTC

Attach

Attach

Attach

EC can be attached/ detached in runtime

Ext. trigger 
thread

Real-time 
thread

Non-real-time 
thread

Execute by time Execute by real-time Execute by external trigger

Business 
logic

Business 
logic

Business 
logic

ROS ROS ROS

Logic execution type is fixed in compile time

R
TM

R
O

S



Combination of execution contexts and 
RTCs

One EC and one RTC
（default）

RTC

One EC and multiple RTCs
Sequential execution of RTCs

ex）image processing

RTCRTC

Multiple ECs and one RTC
Parallel execution using shared data

ex）short cycle control and long cycle visualization

RTC



process

Real-time/composite execution

• ROS: 1-node = 1-process
– Sequential execution, close coupled composition are impossible
– Some tools such as ros_control, realtime-tools can supports such 

requirement
– However, node must be designed different way from normal ROS node

10

1
TI s

TDs

Kp+-

Sensor RTC Controller RTC Actuator RTC

Logic LogicLogic

(Real-time) Execution Context

Execute Execute Execute

Motor
Rotary encoder

RTC architecture realizes composition, real-time execution for multiple RTCs
Execution and logic are separated, and various execution type can be realized



New communication features
• Topic connection

– DDS, ROS like connection scheme
– Topics are registered and matched 

on naming servers
• Direct connection

– OutPort directly write into InPort’s
variable

– Two RTCs must be in a same 
process

– Thread-safe implementation. 
Execution context isn't necessarily 
shared RTCs

• Shared memory connection
– Same node, but different 

process/language RTCs can 
communicate.

– Marshalled data are stored/read 
into/from shared memory area.

11

Name server

RTC A

1. Registration
By port references

RTC B

3. Making connection

topic_name
RTC A

RTC B
port_out

port_in

Connection by topic

2. Registration
By port references

4. Connection established

リングバッファ

read()
write()

Data transfer path for “Direct” connection

リングバッファ

マーシャリング
アンマーシャリング

Process boundary

RTC RTCOutPort InPort

Same address space

マーシャリング無し アンマーシャリング無し

データポート
変数

Normal data path
CORBA(TCP/IP)

データポート
変数

Direct connection

リングバッファ

read()
write()

リングバッファ

マーシャリング
アンマーシャリング

RTC RTCOutPort InPort

データポート
変数 データポート

変数

Shared memory

アンマーシャリングマーシャリング

Shared memory connection
Process boundary Process boundary

Normal data path
CORBA(TCP/IP)

Path for “Shared memory” connection



ROS2 node

Other features
• Master-slave manager

– Master: Frontend 
process to application, 
slave management

– Slave: It actually hosts 
RTCs.

• Secure communication 
(SSL)
– CORBA’s SSL features 

are used
• DDS port 

implementation will be 
included
– ROS2 compatibility 

might be realized

CORBA comm.

Raw TCP Socket

Direct

Shmem.

DDS communication port

RTC RTC RTC RTC RTC

RTC directory query
RTC launch command

RTC reg. by slave
Launching slave

RTC launch
RTC search

Master manager

Slave manager Slave manager Slave manager

ポート番号固定 :2810 番

ポート番号任意 ポート番号任意 ポート番号任意



Choreonoid[Nakaoka SII12]

• www.choreonoid.org
• Windows and Linux are supported
• Open source software（MIT license）

• Basic functions to handle robot models are 
included

• Dynamics simulator is embedded
• Users can extend by developing/adding plugins
• Lightweight and efficient single process 

architecture

Choreonoid is an extensible framework for robot 
applications.



Use cases of Choreonoid

1. Robot world simulator
The official simulator of JVRC 
(Japan Virtual Robotics Challenge)

2. Teleoperation interface
User interface for supervised 
autonomy used at DRC Finals

3. Robot choreographer
CG software-like interface and 
automatic balance compensation



Choreonoid as a simulator
• Joints

– Free, fixed, rotate, slide
• Sensors

– Force/torque sensor, gyrometer, 
accelerometer, camera, RGBD 
camera, range finder

• Shape description
– VRML97, COLLADA, STL

• Middleware
– RTM, ROS

• Physics engines
– AIST, ODE, PhysX, AgX, Bullet

• Not implemented
– Deformable objects, cable, aerial 

robots, radio wave, sound, …



Choreonoid as a User Interface

• Markers
– Walk destination marker
– Body part marker
– Manipulation marker
– Measurement marker

• Task sequence system
– Task description by 

Python



Example: turning a valve

17

Simulation viewRobot’s views

Task sequence view

Main view



Continuous Integration using dynamics 
simulation

update

DeveloperVersion control

polling

Continuous integration tool

E-mail

movieWeb page
Log and screenshot



Summary page of test results

build results on
different OSs

task execution 
results

Latest 10 test results

Link



History page of test results

Link to a movie on YouTube

Link to a build log and a screenshot on Google Drive

Link to GitHub pages
Link



Links

• Choreonoid
http://www.choreonoid.org

• OpenRTM-aist
http://www.openrtm.org


