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Abstract— Robotics is being heavily integrated in a great
number of daily-life applications, such as domestic assistance,
autonomous driving, and healthcare. Other applications, such
as entertainment, are beginning to integrate robotic elements. A
robotic behavior, however complex, can in general be modelled
and implemented as a Finite State Machine (FSM). While
these robotic behaviors may typically be implemented using
high-level scripting languages such as Lua or Python, or even
proprietary solutions, a set of use cases where the efficiency of
C++ must be invoked exist. The use case presented in this paper
is Robot Devastation, a video-game that combines Augmented
Reality elements with robots to emulate combats between
robots. Robot Devastation strives for code efficiency to enhance
the end-user game play experience. In this work, we present
the lightweight reusable C++ library that has been developed
for implementing its FSM, reluctantly called StateMachineLib
within the rd:: namespace. Aimed at seamless integration with
robotic middlewares, let its current loosely coupled integration
with the well-known robotic platform YARP serve as a living
example its flexibility and usefulness.

I. INTRODUCTION

Although robotics and automation have been traditionally
focused on improving industrial production performance and
capabilities, there is a rising trend of applying robotics in
domestic environments and tasks. The main goal of these
robots, such as robotic vacuum cleaners or cooking helpers,
is to leverage the amount of everyday chores that humans
have to perform at home. Nonetheless, an increasing number
of robotics devices are beginning to be used for more diverse
applications, such as education and entertainment.

In entertainment, robotics has the potential to impact with
novelty and expand the currently available or traditional
games in ways never seen before. Physical interaction with
the real world allows a more natural interaction with the
game elements. However, when using real-world robots as
avatars for the players instead of virtual characters, several
issues arise that challenge the enjoyment of the players.
Robots are complex systems that are affected by real-world
issues such as noise, communication latency, battery capac-
ity, camera resolution, etc.

In our previous work [1] we proposed an architecture that
combines Augmented Reality (AR) elements with robots to
enhance the gaming experience while mitigating some of the
aforementioned issues. One key element of a game is a state
machine to control the game flow and actions available at
each game situation. Whereas Robotic Middlewares (such
as ROS[2] or YARP[3]) are typically focused on interfacing
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with robot hardware and can provide support for advanced
data processing algorithms for navigation, collision avoid-
ance, etc; a lightweight FSM C++ library aimed at being
losely coupled with different robotic middlewares was not
found within the current state of the art.

In this work, we present the FSM architecture we have
developed within our Robot Devastation augmented reality
robot video-game, and integrated with YARP in a losely
coupled manner. It provides a simple and straightforward
way of describing states and integrating them in a FSM.

II. STATEMACHINELIB

The Robot Devastation StateMachineLib, currently part of
the rd:: namespace, is composed by three main classes: State,
StateDirector, and FiniteStateMachine.

A. State

State is the base class for each state of the FSM. To create
custom states, one must inherit from this class. The state
functionality is implemented by overriding the following
virtual member functions:

« setup(): Function executed right before the loop func-
tion, when the state is enabled. Return true/false upon
success/failure.

« loop(): Function executed periodically when the state is
active. Return true/false upon success/failure.

o cleanup(): Function excuted when the state is going
to be stopped (due to an error or a transition). Return
true/false upon success/failure.

« evaluateConditions(): This function is called after each
call to loop() in order to know the transition to make.
An integer value is assigned to each possible transition
to identify them. This function must return the transition
selected depending on the conditions of the state.

This architecture provides flexibility to the user, allowing
him to create both Moore and Mealy Machines, as well as
other more exotic state machine architectures, if required. For
instance, to create a Moore Machine, whose outputs depend
only on the current state, the user would only implement the
setup() function with the corresponding outputs and leave
the loop() and cleanup() empty. Conditions would then be
periodically checked in the evaluateConditions() function.

B. StateDirector

Execution flow of the different states is controlled through
a StateDirector class attached to a State. It is not necessary
to implement a custom StateDirector for a custom State, as



the StateDirector just provides the implementation to control
how States are executed and how transitions are performed.

The execution flow (Fig. 1) is the following. When a
StateDirector is started, it becomes the active StateDirector,
and the associated state’s setup() function is called. Then, it
enters in a loop, in which, periodically, the StateDirector
executes the state’s loop() method. Each time the loop()
method is executed, the state’s evaluateConditions() function
is called, obtaining the ID of the next state to be run. If the
next state is not the current state, the current state is stopped
and the next one is started. Otherwise, the loop proceeds
with the next iteration.
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Fig. 1: Execution flow of Robot Devastation FSM

C. FiniteStateMachine

The StateMachine class provides a nice interface to ma-
nipulate the StateMachine. States are added and configured
and, then, the FiniteStateMachine is executed with the start()
function. From that point, the FiniteStateMachine takes care
of the execution flow and the deletion of the different states
once the execution has finished.

To create a FiniteStateMachine, a helper class called
StateMachineBuilder is additionally provided. The StateMa-
chineBuilder follows the builder programming pattern, en-
capsulating and decoupling the creation of the FiniteStateMa-
chine from its implementation. New states and transitions

can be added to configure the FSM through its simple
interface. Once configured, the FiniteStateMachine is created
and returned to the user, which can then start it.

III. CONCLUSIONS

To validate the concept presented in this work, the a FSM
was implemented and integrated in Robot Devastation using
the proposed framework. Robot Devastation is a multiplayer
Augmented Reality game that uses robots as avatars for the
players, emulating robot battles [4]. The FSM is in charge
of the game flow control, with 4 main states: init, game,
dead and exit. In the init state, the game shows the initial
screen and waits for user input to log in the game server.
Once it is logged in, the state machine starts the game state,
which shows the game display with all the info relevant to
the current combat: health, ammo, and health of the other
players. Once the health arrives to 0, the player is dead, and
the state machine moves to the dead state for 10 seconds.
Then, the player can choose to respawn in the game or exit
the game. When the player requests to exit the game, either
during the game or in the dead state, the exit state is started,
where the player is properly logged out from the game server.
Each of the states was developed and tested individually,
and the later integration of states in the FSM was simple
due to the modular nature of the framework. While simple
mobile robots and turrets are currently used in game-play,
advanced humanoid robotics and unmanned aerial vehicles
remain within the Robot Devastation agenda.
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