
SROS: Securing ROS over the wire,
in the graph, and through the kernel

Ruffin White and Dr. Henrik I. Christensen
Contextual Robotics Institute

UC San Diego, California, USA

Dr. Morgan Quigley
Open Source Robotics Foundation
Mountain View, California, USA

Abstract—SROS is a proposed addition to the ROS API
and ecosystem to support modern cryptography and security
measures. An overview of current progress will be presented,
rationalizing each major advancement, including: over-the-wire
cryptography for all data transport, namespaced access control
enforcing graph policies/restrictions, and finally process profiles
using Linux Security Modules to harden a nodes resource access.
By making the community aware of the vulnerabilities in ROS,
as well as the proposed solutions provided by SROS, we intend
to improve the state of security for future robotics subsystems.

Keywords—ROS, Encryption, Access Control, Cybersecurity.

I. INTRODUCTION

Cybersecurity is quickly becoming a pervasive issue for
robotics, especially so as robots become more ubiquitous
within society. With the advent of industrial automation, au-
tonomous vehicles, robot-assisted surgery, commercial surveil-
lance platforms, home service robots, and many more robotics
domains, security of these subsystems should be considered
vital, as they all provide a vector for cyber threats to manifest
into real-world risks. Even without the hazards associated with
industrial-strength robot arms or high-speed driverless semi
trucks, personal robots promising to integrate with the Internet
Of Things could become targets for breaches in privacy and
sources of identity theft, similar to smartphones and PCs [1].

The Robot Operating System (ROS), a widely adopted
standard robotic middle-ware due in part to its active commu-
nity, provides a communication layer abstracted above a host
operating system to construct a heterogeneous compute cluster
for robots [2]. ROS, an open source initiative, was developed
to simplify code reuse among robots with wildly varying hard-
ware and to support large-scale software integration efforts.

However, original development of ROS was biased by at-
tributes valued by robotics researchers, including: flexible com-
putational graphs, modular publish and subscribe networks,
and rapid software prototyping. Now that ROS and deriving
robot platforms are out-growing the realm of research and into
commercial & industrial sectors, support for network security,
identity authorization, and scoping resource permissions have
quickly risen to the forefront of requested features.

To answer these requests, we propose a set of new security
features to the core of ROS’s codebase, Secure ROS (SROS).
Announced publicly at ROSCon 2016 by authors White and
Quigley [3], SROS is a proposed addition to the ROS API
and ecosystem to support modern cryptography and security
measures in an effort to address existing vulnerabilities.

Current features in SROS include: native TLS support for
all IP/socket level communication within ROS, the use of x.509
certificates permitting chains of trust, definable namespace
globbing for ROS node restrictions and permitted roles, as
well as convenient user-space tooling to auto generate node key
pairs, audit ROS networks, and construct/train access control
policies. In addition, AppArmor profile templates will also be
introduced, allowing users to harden or quarantine ROS based
processes running on Linux.

II. SECURE COMMUNICATIONS

In ROS, nodes intercommunicate through an API via XML-
RPC, a remote procedure call protocol using XML encoding,
as well as message/service data exchanges using transport
libraries such as ROSTCP or ROSUDP for serialization over
IP sockets. A glaring deficiency in the traditional infrastructure
is the fact that all network traffic is transmitted in clear text.
Additionally, no integrity checking is preformed on received
packets other than basic message type continuity and API call
validity, i.e. there are no means to verify payload information
was unaltered in transit. This makes ROS a prime target for
packet sniffing and man-in-the-middle attacks, resulting in an
absence of native network confidentiality and data integrity.

In SROS, all network communication is encrypted using
Secure Sockets Layer (SSL), or more specifically Transport
Layer Security (TLS). This done through the use of Public Key
Infrastructure (PKI), where by each ROS node is provided an
X.509 certificate, equivalently an asymmetric key pair, signed
by a trusted certificate authority (CA). These additions are all
done at the ROS library level, enabling users with preexisting
code and projects levering ROS’s abstraction layers to also
seamlessly support SROS.

These additional safety measures do bring their own com-
plexities, but as with the authors’ opinion, security without
usability remains insecure, we’ve also developed tooling to
support and simplify the tasks of using PKI in ROS. SROS
provides a keyserver for certificate generation, as well as
native API to distribute cyphered certificates to nodes upon
a setup. The keyserver remains separate from roscore, and can
thus easily be executed elsewhere on the network or taken
offline completely, elevating the need for CA exist on the
robot, leaving certificates imitable. Additionally, the keyserver
provides a customizable configuration, where users can curtail
certificate and CA properties by a node or node name-space
basses, e.g. key algorithm, bit length, fingerprint, as well as
CA info, extensions, restrictions, hierarchy, etc.



III. ACCESS CONTROL

ROS uses name-spaces to define most locations and as-
pects of ROS’s computational graph, such as message topics,
services, parameters, and the resolvable names of nodes them-
selves. Besides the requirement that nodes be named uniquely,
the traditional infrastructure provides no level of access control
for graph actions such as limiting what name-spaces a node
may assume, what topics it can publish/subscribe, parameters
it may read/write, services it may call/advertise, or what
internal ROS API it may invoke in the graph. Although this
flexible aspect of ROS makes it pleasant for debugging and
rapid prototyping, the absence of any safeguards leaves ROS
graphs susceptible to rogue or compromised nodes, spoofing
message data and master/slave functions such as name-space
registration or node shutdown. This also makes the use of ROS
in industry tricky, as there are no guaranties of maintaining
graph topology once deployed.

SROS introduces access control through the use of PKI by
embedding policy definitions in X.509 certificate extensions.
Again, because these certificates are signed, any attempt to
mutate or elevate a node’s own permissions will void the CA’s
signature, and thus fail during the TLS handshake for incoming
and outgoing p2p connections. A node’s policy is defined by
the presence of object identifier (OID) fields, where each OID
maps to specific allowed or denied action, and the value of the
field uses a regex like syntax to define the name-space scope
of the action in question. This policy profiling resembles that
of AppArmor’s mandatory access control (MAC) [4], where
permissions may be aliased across a sub-tree path, but then also
revoked for specific nested sub-trees. In fact, SROS’s default
globbing style is the same used in AppArmor, as the syntax
is more applicable to scoping paths and is human readable for
auditing purposes.

This security feature also introduces its own complexities,
since flawlessly defining a policy profile that encapsulates
all of the expected exchanges in a ROS graph would be a
daunting task manually. So in line with the authors’ focus
on security and usability, tooling for learning policy profile
through demonstration has also been incorporated into SROS.
SROS provides a varying degree of run-time modes, including
audit, enforce and complain, again borrowing feature designs
from AppArmor. This provides developers a method to auto
generate, or amend profiles through granular logging of access
events and violation attempts.

IV. PROCESS PROFILES

For networked systems, application security is arguably
the single-most important area of concern [4], and as ROS
sits squarely in this domain as a networking middle-ware
for robotic applications, all facets of its functions should be
secured. However ROS packages come from varying sources,
and vetting each dependency in this high-level stack for un-
common vulnerabilities can be impractical for many. Enabling
MAC for ROS nodes processes can help mitigate zero-day-
exploits that enable attackers to gain shell access or invoke
local privilege escalation, as well as quarantine unknown
malfunctions during run-time such as accidentally overwriting
another node’s log files.

AppArmor is one such implementation of MAC building
from the security modules available in the Linux kernel,
and is widely adopted in Ubuntu, ROS’s primary release
target. AppArmor is also well documented and user-friendly
relative to alternatives such as SELinux, making it a suitable
MAC of choice for ROS. SROS provides a profile library
for AppArmor, composed of modular primitives to quickly
build custom profiles for ROS nodes. These include the
minimal permissions necessary for core ROS features, such
as the interposes signalling needed for roslaunch to manage
nodes, shared library access for nodes written in python or
C++, network access for socket communication, etc. Using
the SROS profile library, users can focus on defining MAC
pertinent to the application, e.g. prescribing nodes access to a
serial buss, camera peripherals, or e-stop interfaces.

V. ADDITIONAL REMARKS

A potential drawback in sharing X.509 certificates for both
transport security and access control usage is that policy meta-
data is then made public. For some cases, policies or name-
spaces themselves may be sensitive. For this, the policies
would either need to be obfuscated, or transmitted via a sec-
ondary certificate after establishing a secure transport tunnel.
The first adds the challenge of keeping the un-obscurification
method secret, and the later adds complexity in challenging
yet another certificate’s ownership, signature verification, and
CA chain validity. These issues may be addressed with ROS2
and DDS, but for ROS1, SROS intends to provide reasonable
security infrastructure while yet minimizing current user dis-
ruptions, such as computational overhead and API breakage.

It should be noted that SROS’s implementation, specifically
its shimming framework between the ROS API and IP stack,
has been designed so that both default methods for secure
transport and policy evaluation are plug-ins. This should pro-
vide advance users the ability to adapt SROS for their own
internal certificate formats or policy interpretation. Addition-
ally, security logging is also under development, standardizing
the format like that of AppArmor, enabling more powerful
auditing and policy generation tools.

Further project documentation can be found at the ROS.org
wiki 1, along with Dockerized [5] examples to quickly provide
readers a starting point in experimenting with SROS.

REFERENCES

[1] F. J. R. Lera, J. Balsa, F. Casado, C. Fernández, F. M. Rico, and
V. Matellán, “Cybersecurity in autonomous systems: Evaluating the
performance of hardening ROS,” Málaga, Spain-June 2016, p. 47, 2016.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[3] R. White and M. Quigley, “{,S}ROS: Securing ROS over the wire, in
the graph, and through the kernel,” 2016, ROSCon, Seoul South Korea.
[Online]. Available: https://vimeo.com/187705073

[4] M. Bauer, “Paranoid penguin: an introduction to novell apparmor,” Linux
Journal, vol. 2006, no. 148, p. 13, 2006.

[5] R. White, “ROS + Docker: Enabling repeatable, reproducible and
deployable robotic software via containers,” 2015, ROSCon, Hamburg
Germany. [Online]. Available: https://vimeo.com/142150815

1http://wiki.ros.org/SROS


