
The YARP middleware

Lorenzo Natale
iCub Facility

Istituto Italiano di Tecnologia, Genova, Italy

Towards Humanoid Robots OS
Humanoids 2016 Workshop, Cancun, Mexico, 15th November, 2016

Paikan, A., et al., Enhancing software module reusability using
port plug-ins: an experiment with the iCub robot, IROS 2014.

System Integration

Key issues

Complexity: distributed processing,
heterogeneous systems, noise, real-time

Asynchronous development

Variability: various scenarios and platforms

Fast prototyping

Lack of standards

Fluctuation in hardware and algorithms, lots of
open questions

Component driven software development

Computation

Communication

Configuration

Coordination

Composition

What we are interested in

Dependent on the hardware,
network topology

Application dependent

BRICS Component Model, 2013

YARP approach
• Simplified form of publish-subscribe

– Observer patter: subscribers register their interest directly with publishers, which mange subscriptions
and sends events

• Communication is asynchronous or synchronous

• Space decoupling

• Connections are dynamic

• Remote procedure calls for server-client type of communication

See also:
YARP: Yet Another Robot Platform, G. Metta, P. Fitzpatrick, L. Natale, 2006
Design of Dynamically Reconfigurable Real-time Software Using Port-Based Objects, Stewart et al., 1997

yarpserver
Register /camera, 192.168.1.4:10001
Register /cmd, 192.168.1.4:10002
Query /camera …
Query /cmd …

/camera

/cmd

connect /camera /source2 mcast

/source2

Register /source, 192.168.1.3:10001
Register /pos, 192.168.1.3:10002
Query /camera …
Query /cmd …

/source

/pos
udp/tcp

udpmcast

connect /pos /cmd
connect /camera /source

Which Middleware

• Robot Operating System (ROS)

• YARP

• OROCOS

• SmartSoft

• CORBA

• ICE

• OMG DDS

• Many others: OpenRDK, Mira…

YARP/ROS comparison

YARP
Run-time reconfiguration of connections

Pluggable protocols and devices

Multicast for efficient one-to-many
communication

Multi-platform

QoS, channel prioritization

LGPL/GPL

Smaller community

No packet management

ROS
Strongly typed

Rich set of libraries and tools

Eco-system, very active community

Packet management

BSD license

Ubuntu based

Restricted set of protocols

All connections from a topic use the
same protocol

YARP main features
• Peer-to-peer, loosely coupled, communication

• Stable code base >10 years old

• Written in C++, bindings for python, Java, Matlab etc..

• Easy install with binaries on many OSes/distributions (Ubuntu,
Debian, Windows, MacOs

• Recently added: channel prioritization (including QoS)

• Custom protocols:
– Built-in: tcp/udp/mcast

– Plug-ins: ROS tcp, xml rpc, mjpg etc..

http://www.cs.wustl.edu/~schmidt/gifs/F-15_three_shipper.jpg

Simulators and datasets
• Using YARP without hardware: dataset player, simulators

• Available in sources and binary releases for Linux and Windows

• URDF models for iCub, Coman, Armar III, Walkman

• Gazebo (https://github.com/robotology/gazebo-yarp-plugins)

• Robotran (symbolic engine)

Repositories

Source: https://www.openhub.net/p/robotology

116 members
160 contributors/year
11115 commits/year
243 total contributors

Managing repositories & build system
• Projects are managed at the level of individual repositories and large

builds (i.e. project repositories)

• Repositories are hosted on Github and on our own GitLab installation

• Single build system (YCM):

– Agglomerate several projects in larger builds

– Favor sharing of code (as opposed to binaries)

– Built on top of CMake (~20 patches contributed to CMake)

https://github.com/robotology/ycm

Walkman
download_and_compile(yarp)
download_and_compile(Gazebo)
download_and_compile(GazeboYARPPlugins)
download_and_compile(ComanSimulator)
download_and_compile(planner)
download_and_compile(valve)
….

gitlab.icub.org

rrts_core
ComanSimulator
pilot_interface
planner
valve
….

lib-ace
libxml2-dev
libeigen3-dev
….

ros-indigo-desktop-full
ros-indigo-joy*
ros-indigo-openni2

GazeboYARPPlugins
Gazebo
YARP

github.com

Issue & Bug Tracking
Documentation
Continuous integration
Better visibility

Easier deployment
Documentation
Continuous Integration

https://github.com/robotology/ycm

Testing
• Unit testing for the YARP middlware on

compile farm and github (travis)

• Pull Requests are peer-reviewed using
CodeReviewHub

• Robot software is tested using Robotic
Testing Framework

– Specifications

– Individual components

– Configuration

– Bugs

Managing and building

Managing and building

Interfaces
• Robot abstraction layer: interfaces to motors and sensors

minimize the impact of changes in the hardware

• Custom interfaces and data types (Thrift IDL)

point3d.thirft

struct Point3D {

1: i32 x;

2: i32 y;

3: i32 z;

}

adder.thirft

service Adder {

/** … */

i32 get_answer();

/** … */

bool set_answer(1:i32 val)

/** … */

i32 add (1:i32 x);

}

Robot Interfaces

…
…

read encoders
read IMU
read FT
…
get image
...
set position

Loops on board
R

o
b

o
t

In
te

rf
ac

e

Robot

Robot Interfaces

…
…

read encoders
read IMU
read FT
…
get image
...
set position
.

External loops

R
o

b
o

t
In

te
rf

ac
e

…
…

read encoders
read IMU
read FT
…
get image
...
set position

Loops on board

Network

N
e

tw
o

rk
 S

tu
b

N
e

tw
o

rk
 S

tu
b R

o
b

o
t

In
te

rf
ac

e

Robot

YARP plugins

• YARP includes a plugin system for drivers and protocols (carriers)

• Interchangeable carriers allow:
– interfacing existing software with ports (without bridges)

– change significantly port behavior

• Examples: ROS, mjpeg, xml rpc, …, port monitor

Carrier plugins
YARP Camera

/camera YA
R

P

yarp connect /camera /receiver

receiver

YA
R

P

yarp connect /65.52.88.202:5159 /receiver mjpeg

MJPG camera

http://65.52.88.202:5159
receiver

YA
R

P

Camera.msg

yarp connect /image@/camera /receiver

ROS Camera
Node: /camera
Topic: /image

receiver

More on YARP-ROS (1)
• YARP protocols for rostcp and xmlrpc

• Compatibility with roscore

• YARP can interpret ROS messages, statically or dynamically

• Extended YARP’s API (nodes, publishers, subscribers)

yarpidl_rosmsg

Pose.msg

Twist.msg

Pose.h

Twist.h

#include "Pose.h"

#include "Twist.h"

/* create ROS Node /controller */

yarp::os::Node node("/controller");

/* create a subsriber for Pose.msg */

yarp::os::Subscriber<Pose> pose;

/* subscribe to /turtle1/pose */

pose.topic("/turtle1/pose");

/* create a publisher for Twist.msg */

yarp::os::Publisher<Twist> cmd;

/* publish to /turtle1/cmd_vel */

cmd.topic("/turtle1/cmd_vel");

/* read a new value from the topic */

pose.read(p);

/* publish the command */

cmd.write(t);

yarpidl_rosmsg –name /typ@yarpidl

C:\yarp read /turtle1/pose@/reader
yarp: Receiving input from /turtlesim to
/turtle1/pose-@/reader
5.544445 5.544445 0.0 0.0 0.0
5.544445 5.544445 0.0 0.0 0.0
...

[type] BEGIN turtlesim/Pose
[type] float32 x
[type] float32 y
[type] float32 theta
[type] float32 linear_velocity
[type] float32 angular_velocity
[type] END turtlesim/Pose

turtlesim/Pose?

ROS types

$ rosrun turtlesim turtlesim_node
[INFO] [1444722896.501281004]:
Starting turtlesim with node name
/turtlesim

turtlesim/Pose
[Data]

YARP machine ROS machine

ROS+YARP machine

Whole-Body
Modules

RobotInterface

Locomotion
Module

Manipulation
Modules

Perception

Pilot
Interface

Footstep &
Trajectory
Planners

ComanWalkma
n

ROS gmapping, RVIZ, Gazebo

Paikan, A. et al, Data Flow Port's Monitoring and Arbitration, JOSER 2014

Port monitor

Paikan, A. et al, Data Flow Port's Monitoring and Arbitration, JOSER 2014

if (C1.certainty > 0.9)
accept(C1)

else
accept(C2)

arbitration

coordination
if (check(C1)

dispatch(event)

filtering
C1=filter(C1)

logging
dispatch(C1)

monitoring delays, QoSIf (C1)
T1=getTime()

Why Channel Prioritization (QoS)

HOST1 Robot

HOST1 Robot

switch

20% load

HOST1
Robot

switch

HOST2

Channel prioritization

Determinism is affected by:
• Thead scheduling (CPU usage)
• Packet conflicts (network usage)

Bottlenecks

Approach: improve determinism by increasing thread priorities
and reducing network bottlenecks using QoS

> prop sched policy 1 priority 30
> prop set qos priority HIGH

Paikan et al., A Best-Effort Approach for Run-Time Channel
Prioritization in Real-Time Robotic Application IROS 2015

HOST1 Robot

switch

20%/70% load

With priority (20%)Standard YARP (20%) With priority (70%)Standard YARP (70%)

HOST1 Robot

switch
HOST2

20%/70% load

Comparison with DDS

Comparison with DDS

An application

Acknowledgements
Ali Paikan (YARP, port monitor, channel prioritization)

Daniele Domenichelli (YARP, ROS-YARP)

Alberto Cardellino (YARP, robot interface, ROS-YARP)

Marco Randazzo (robot interface, firmware)

Andrea Ruzzenenti (simulator, slam)

Marco Accame (firmware)

Valentina Gaggero (firmware)

Alessandro Scalzo (firmware)
Ugo Pattacini

Vadim Tikhanoff

Silvio Traversaro

Francesco Romano

Francesco Nori

Giorgio Metta

Thank you

