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Motivation

Can humanoid robots achieve stability and
real-time performance?




Fundamental Challenges

@ Whole-Body Operational Space Control (WBOSC) with embedded actuator dynamics
and feedback delays 1s an unsolved scientific problem

@ Actuator dynamics and time delays are commonly ignored but play important
roles in closed-loop system stability and control performance

@ [Itis crucial to formulate and experiment control frameworks to achieve optimal,
safe and real-time performance with environmental/human interaction.

@ Existing impedance control methods lack performance measures.

@ Stability/passivity of Whole-Body Operational Space Control require more investigations.
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Objective

To formulate and reason about a distributed Whole-Body Operational
Space Control framework with feedback delays and series elastic
actuator dynamics for humanoid robots to achieve complex tasks.
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Roadmap

. D
Distributed Whole-Body
Operational Space Control of
humanoid robots in cluttered
9 environments P
Passivity of time-delayed
Whole-Body Operational
Space Control
Stability and performance of J
distributed control system
with feedback delays
- Impedance control and
S — performance characterization of
series elastic actuators
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Physical Observation
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Distributed Impedance Control Diagram
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Distributed Control Analogy: Robot and Human Nervous System

Human Nervous System

Central Nervous System

Brain

Distributed Robot Control System

Spinal cord
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Stability Sensitivity to Different Time Delays

Varying stiffness feedback delays Varying damping feedback delays
(Td =3 ms, fv =150 Hz) (Ts =3 ms, fv =50 Hz)
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Sensitivity to damping delay > Sensitivity to stiffness delay
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Sensitivity Discrepancy Analysis

Valkyrie Actuators

TABLE I: UT-SEA/Valkyrie Actuator Parameters

Actuator output inertia | passive damping | damping gain | ratio
Type m v
UT-SEA 360 kg 2200 N-s/m 50434 N-s/m | 22.92
Valkyrie 1 270 kg 10000 N-s/m 46632 N-s/m 4.66
Valkyrie 2 0.4 kg-m? 15 Nm-s/rad 68 Nm-s/rad | 4.55
Valkyrie 3 1.2 kg-m? 35 Nm-s/rad 196 Nm-s/rad | 5.60
Valkyrie 4 0.8 kg-m? 40 Nm-s/rad 145 Nm-s/rad | 3.61
Valkyrie 5 2.3 kg-m? 50 Nm-s/rad 360 Nm-s/rad | 7.20
Valkyrie 6 1.5 kg-m? 60 Nm-s/rad 259 Nm-s/rad | 4.32

Maximum Allowable Damping Gains for Effective Delays of 0.5

ms

UT-SEA and Valkyrie

Surface of Bmax/b Linear Actuators

= U Breakdown Gain
‘:‘\‘ =, boundary Y= 2
X :
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@ Servo breakdown gain rule

B > 2b

@ Phase margin sensitivity to time delays

[Zhao, et. al, IEEE Trans. Industrial Electronics 2015]
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UT Actuator Tracking
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How about MIMO systems?
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Distributed Operational Space Control
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How about actuators with high-order dynamics?

e.g., series elastic actuator.

SEA Plant (Pr)
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SEA Control Diagram

Embedded Torque Control Loop
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Critically-damped Gain Selection Criterion

Embedded Torque Control Loop

Embedded Damping Servo Loop

[Qus Je—e Tuer]

High-Level Stiffness Servo Loop

e—quS (

TABLE 1
CRITICALLY-DAMPED GAIN SELECTION RULE

Frequency Impedance Gains Torque Gains Phase
(Hz) (Nm/rad, Nms/rad) | (A/Nm, As/Nm) | Margin
B K, =165 K;=1.18 o

Jn =12 By =0.46 B; =0.057 49.1
_ K, =283 K, =1.80 o

fn=14 B, = 0.76 B, =0.067 | 27V
. K, =103 K, =256 o

Jn =16 B, = 1.02 B, =0077 | 36
- Kq=124 K, =345 o

fn =18 B, = 1.26 B, =0087 | 599
_ K, =148 K, =4.48 o

fn =20 By = 1.49 B, —0.097 | 364

@ A critically-damped gain selection criterion is designed to deterministically solve all the gains.

@ There exists a trade-off between torque and impedance feedback gains.

@ A gain scale GS 1s proposed

K. K B B
GS=—"Tr="0 (GS=_Tr=_I
K. K, B, B,
C Optimal
THE UNIVERSITY OF 9.‘\0‘“6 t ",3% performance
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SEA Impedance Analysis with Time Delays and Filtering
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by delay
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@ What type of metric can be used to quantify SEA impedance performance?

SEA Z-region

The SEA impedance performance can be
measured by a Z-region, which is a frequency
domain region composed of the achievable
impedance magnitude range (Z-width) over a
particular frequency range (Z-depth).

Zregion = / W () loglZu(jiv)| ~ loglZe) | o

l
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Dynamic Balancing on Hume Bipedal Robot

(Experiment lead by Donghyun)
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How about SEA + MIMO system?

Time-delayed Whole-Body Operational Space
Control with SEA dynamics

19



SEA-aware Whole-Body Dynamics

Embedded SEA Controller
Motor Damping Feedback

Small time delays

Contact Constrained,

Whole-Body WBOSC
SEA
Operational Space  Torque Torque Free 11: l?\?ltl?g ISOZO'(S
Controller Command EonmE wit] ulti-Body
Dynamics
Large
time
delays
High-Level Cartesian Position Feedback

Proposition: SEA-aware whole-body dynamics

Given an Euler-Lagrangian formalism, the following whole-body
dynamics with the SEA model can be derived

A(q)q +N(q, ) JTF — UTFseaa (1)
BH + Fsea — Fma (2)
| K(B — q]), (3)
where N(q,q) = b(q,4)q + g(q). J
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Time-Delayed Whole-Body Operational Space Control

For contact-free motion control (i.e., F. = 0), the SEA torque
command I'., at the embedded level is

. Ty +T, T
Fsea(t) — J(Zdo) (At|s,(—d0)Kx(xd(t - N L) o x(t — Ty — 7[1)))

— B,6(t) — DgO(1) +2(0)(_ap)

where the matrices with subscript —d, are evaluated at the
instantt —dyp =t — Ty — T../2.

Ty/2
i o v h 4 A
- Fsea q ]
EmbendecioEL Multi-body Dynamics L
Controller —
[Z/2] (6, q) (72
Whole-Body Operational Passive Contact
r... Space Controller Environment
OSC
Controller-side Passive Subsystem ) Joint-side Passive Subsystem
THE UNIVERSITY OF é\’«\; '
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LMI-based Passivity Criterion of Time-Delayed WBOSC

Theorem: Passivity criterion of prioritized multi-task control

Consider N prioritized Whole-Body Operational Space tasks. If there exists a
set of positive-definite matrices Q.,i € [1, N] and a positive time delay scalar
d; such that the following LMI holds,

—Do + ldl Zl 1 Jz|prec( ) (q)QiJ;Tprec(i) (q) %_I_Ml T %alMN
x —3diQ, 0 0
j 07
0
X — %c_z'lQN
where M; = thm( 3 (@) Aijprec(i) Kx,i, then the interconnected feedback system

is passive for prioritized multi-task control and motor velocity 8 is bounded. ]

Allowable Maximum Delays
under Different Damping Gain Matrices

B D, = diag(10,100,100)
40|[ ] D,=diag(20,100,100)
I D, = diag(30,100,100) —

50

30F

201

Maximum Delay [ms]
|

10}
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Distributed WBOSC on A Bipedal Robot
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Joint-level cascaded
torque + motor damping
controller

Force sensing for internal
force feedback control

First time that the
distributed WBOSC is
implemented on a
point-feet bipedal

robot with series elastic
actuators
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Conclusions

@ Observed that system stability and tracking performance are more sensitive to
damping than stiffness feedback delays.

@ Embedded dampping Higher achievable impedance
@ Servo Breakdown Gain Rule: B > 2b

@ Proposed a critically-damped gain selection criterion to achieve optimal performance

@ Analyzed effect of time delays and filtering

@ Devised an impedance performance measure: Z-region.
@ Analyzed the passivity of time-delayed WBOSC with SEA dynamics via LMI technique

@ Experimental validations
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Summary of Contributions

Trajectory Tracking under Different Feedback Delays

@ Tracking performance is more sensitive to
damping feedback delays

@ Robustness to stiffness feedback delays

Distributed Operational Space Control

@ Stability of delayed systems
@ High impedance control

@ Bechavior reasoning and experimental validations

Time-delayed Whole-Body Operational Space Control

@ Stability and passivity of overall feedback systems

@ Impedance and torque control
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