

Stability and Control Performance Limits of Latency-Prone Distributed Whole-Body Operational Space Control

Ye Zhao

Agile Robotics Laboratory, SEAS, Harvard University Human Centered Robotics Laboratory, The University of Texas at Austin

2016 Humanoid Workshop on Humanoid OS

Motivation

Fundamental Challenges

- Whole-Body Operational Space Control (WBOSC) with embedded actuator dynamics and feedback delays is an unsolved scientific problem
- Actuator dynamics and time delays are commonly ignored but play important roles in closed-loop system stability and control performance
- It is crucial to formulate and experiment control frameworks to achieve optimal, safe and real-time performance with environmental/human interaction.
- Existing impedance control methods lack performance measures.
- Stability/passivity of Whole-Body Operational Space Control require more investigations.

Objective

To formulate and reason about a distributed Whole-Body Operational Space Control framework with feedback delays and series elastic actuator dynamics for humanoid robots to achieve complex tasks.

Roadmap

Distributed Whole-Body Operational Space Control of humanoid robots in cluttered environments

Passivity of time-delayed Whole-Body Operational Space Control

Stability and performance of distributed control system with feedback delays

> Impedance control and performance characterization of series elastic actuators

TEXAS

Physical Observation

THE UNIVERSITY OF

AT AUSTIN

[Zhao, et. al, IEEE Trans. Industrial Electronics 2015]

Distributed Impedance Control Diagram

$$P_{CL}(s) = \frac{x}{x_D} = \frac{Bs + K}{ms^2 + (b + e^{-T_d s} BQ_v)s + e^{-T_s s} K}$$

[Zhao, et. al, IEEE Trans. Industrial Electronics 2015]

Distributed Control Analogy: Robot and Human Nervous System

Stability Sensitivity to Different Time Delays

Sensitivity to damping delay > Sensitivity to stiffness delay

[Zhao, et. al, IEEE Trans. Industrial Electronics 2015]

Sensitivity Discrepancy Analysis

Valkyrie Actuators

UNIVERSITY OF

AT AUSTIN

Maximum Allowable Damping Gains for Effective Delays of 0.5ms

TABLE I: UT-SEA/Valkyrie Actuator Parameters

Actuator	output inertia	passive damping	damping gain	ratio
Туре	m	b	В	γ
UT-SEA	360 kg	2200 N·s/m	50434 N·s/m	22.92
Valkyrie 1	270 kg	10000 N·s/m	46632 N·s/m	4.66
Valkyrie 2	$0.4 \text{ kg} \cdot \text{m}^2$	15 Nm·s/rad	68 Nm·s/rad	4.55
Valkyrie 3	$1.2 \text{ kg} \cdot \text{m}^2$	35 Nm·s/rad	196 Nm·s/rad	5.60
Valkyrie 4	$0.8 \text{ kg} \cdot \text{m}^2$	40 Nm·s/rad	145 Nm·s/rad	3.61
Valkyrie 5	$2.3 \text{ kg} \cdot \text{m}^2$	50 Nm·s/rad	360 Nm·s/rad	7.20
Valkyrie 6	$1.5 \text{ kg} \cdot \text{m}^2$	60 Nm·s/rad	259 Nm·s/rad	4.32

• Phase margin sensitivity to time delays

$$\frac{\partial PM}{\partial T_d} < \frac{\partial PM}{\partial T_s}$$

Servo breakdown gain rule

[Zhao, et. al, IEEE Trans. Industrial Electronics 2015]

UT Actuator Tracking

[Zhao, Paine, Sentis, DSCC 14]

How about MIMO systems?

Distributed Operational Space Control

[Zhao, et. al, IEEE Trans. Industrial Electronics 2015]

How about actuators with high-order dynamics?

e.g., series elastic actuator.

SEA Control Diagram

THE UNIVERSITY OF

AT AUSTIN

[Zhao, Paine, Sentis, Humanoids 2014]

Critically-damped Gain Selection Criterion

- A **critically-damped** gain selection criterion is designed to deterministically solve all the gains.
- There exists a **trade-off** between torque and impedance feedback gains.

16

SEA Impedance Analysis with Time Delays and Filtering

(a) SEA impedance with different fn, with/w.o. filter, no delay (b) SEA impedance with different fn, with/w.o. delay, no filter (c) SEA impedance with different fn, with/w.o. delay and filter

• What type of metric can be used to quantify SEA impedance performance?

SEA Z-region

The SEA impedance performance can be measured by a Z-region, which is a frequency domain region composed of the achievable impedance magnitude range (Z-width) over a particular frequency range (Z-depth).

$$Z_{
m region} = \int_{\omega_l}^{\omega_u} W(\omega) \Big| \log |Z_u(j\omega)| - \log |Z_l(j\omega)| \Big| d\omega.$$

Cente

[Zhao, et. al, Sentis, IEEE Trans. Ind. Electron. 2016, in revision]

limited to

Dynamic Balancing on Hume Bipedal Robot

(Experiment lead by Donghyun)

[Kim, Zhao, et, al, and Sentis, IEEE Trans. on Robotics 2016]

How about SEA + MIMO system?

Time-delayed Whole-Body Operational Space Control with SEA dynamics

SEA-aware Whole-Body Dynamics

Proposition: SEA-aware whole-body dynamics

Given an Euler-Lagrangian formalism, the following whole-body dynamics with the SEA model can be derived

$$\boldsymbol{A}(\boldsymbol{q})\boldsymbol{\ddot{q}} + \boldsymbol{N}(\boldsymbol{q},\boldsymbol{\dot{q}}) + \boldsymbol{J}_{s}^{T}\boldsymbol{F}_{r} = \boldsymbol{U}^{T}\boldsymbol{\Gamma}_{\text{sea}}, \qquad (1)$$

$$\boldsymbol{B}\boldsymbol{\ddot{\theta}}+\boldsymbol{\Gamma}_{\mathrm{sea}}=\boldsymbol{\Gamma}_{m}, \qquad (2)$$

$$\boldsymbol{\Gamma}_{\text{sea}} = \boldsymbol{K}(\boldsymbol{\theta} - \boldsymbol{q}_j), \qquad (3)$$

where $N(q, \dot{q}) = b(q, \dot{q})\dot{q} + g(q)$.

[Zhao, and Sentis, Humanoids 2016] (ThPos.74)

Time-Delayed Whole-Body Operational Space Control

Theorem: Time-delayed Operational Space Control

For contact-free motion control (i.e., $F_c = 0$), the SEA torque command Γ_{sea} at the embedded level is

$$\boldsymbol{\Gamma}_{\text{sea}}(t) = \boldsymbol{J}_{(-d_0)}^{*T} \left(\boldsymbol{\Lambda}_{t|s,(-d_0)} \boldsymbol{K}_x \left(\boldsymbol{x}_d \left(t - \frac{T_H + T_L}{2} \right) - \boldsymbol{x} \left(t - T_H - \frac{T_L}{2} \right) \right) \right) \\ - \boldsymbol{B}_s \boldsymbol{\ddot{\theta}}(t) - \boldsymbol{D}_{\theta} \boldsymbol{\dot{\theta}}(t) + \boldsymbol{\bar{g}}(\boldsymbol{\theta})_{(-d_0)},$$

where the matrices with subscript $-d_0$ are evaluated at the instant $t - d_0 = t - T_H - T_L/2$.

LMI-based Passivity Criterion of Time-Delayed WBOSC

Theorem: Passivity criterion of prioritized multi-task control

Consider *N* prioritized Whole-Body Operational Space tasks. If there exists a set of positive-definite matrices Q_i , $i \in [1, N]$ and a positive time delay scalar \overline{d}_1 such that the following LMI holds,

where $M_i = J_{i|\text{prec}(i)}^{*T}(\overline{q}) \Lambda_{i|\text{prec}(i)} K_{x,i}$, then the interconnected feedback system is passive for prioritized multi-task control and motor velocity $\dot{\theta}$ is bounded.

Distributed WBOSC on A Bipedal Robot

- Joint-level cascaded torque + motor damping controller
- Force sensing for internal force feedback control
 - First time that the
 distributed WBOSC is
 implemented on a
 point-feet bipedal
 robot with series elastic
 actuators

[Kim, Zhao, et. al, and Sentis, IEEE Transactions on Robotics 2016]

Conclusions

- Observed that system stability and tracking performance are more sensitive to damping than stiffness feedback delays.
 - Embedded dampping Higher achievable impedance
 - Servo Breakdown Gain Rule: B > 2b
- Proposed a critically-damped gain selection criterion to achieve optimal performance
 - Analyzed effect of time delays and filtering
 - Devised an impedance performance measure: Z-region.
- Analyzed the passivity of time-delayed WBOSC with SEA dynamics via LMI technique
- Experimental validations

Acknowledgements

• Research Supervisor: Prof. Luis Sentis

(et.al)

• Funding agency: ONR, NSF/NASA NRI, UT Austin

Summary of Contributions

- Trajectory Tracking under Different Feedback Delays
 - Tracking performance is more sensitive to damping feedback delays
 - Robustness to stiffness feedback delays

- Distributed Operational Space Control
 - Stability of delayed systems
 - High impedance control
 - Behavior reasoning and experimental validations

- Time-delayed Whole-Body Operational Space Control
 - Stability and passivity of overall feedback systems
 - Impedance and torque control