kinematics-dynamics
Public Member Functions | Private Attributes | List of all members
roboticslab::PardosGotorTwo Class Reference

Second Pardos-Gotor subproblem. More...

#include <ScrewTheoryIkSubproblems.hpp>

Inheritance diagram for roboticslab::PardosGotorTwo:
roboticslab::ScrewTheoryIkSubproblem

Public Member Functions

 PardosGotorTwo (int id1, int id2, const MatrixExponential &exp1, const MatrixExponential &exp2, const KDL::Vector &p)
 Constructor. More...
 
bool solve (const KDL::Frame &rhs, const KDL::Frame &pointTransform, Solutions &solutions) const override
 Finds a closed geometric solution for this IK subproblem. More...
 
int solutions () const override
 Number of local IK solutions.
 
const char * describe () const override
 Return a human-readable description of this IK subproblem.
 
- Public Member Functions inherited from roboticslab::ScrewTheoryIkSubproblem
virtual ~ScrewTheoryIkSubproblem ()=default
 Destructor.
 

Private Attributes

const int id1
 
const int id2
 
const MatrixExponential exp1
 
const MatrixExponential exp2
 
const KDL::Vector p
 
const KDL::Vector crossPr2
 
const double crossPr2Norm
 

Additional Inherited Members

- Public Types inherited from roboticslab::ScrewTheoryIkSubproblem
using JointIdToSolution = std::pair< int, double >
 Maps a joint id to a screw magnitude.
 
using JointIdsToSolutions = std::vector< JointIdToSolution >
 At least one joint-id+value pair per solution.
 
using Solutions = std::vector< JointIdsToSolutions >
 Collection of local IK solutions.
 

Detailed Description

Single solution, double prismatic joint geometric IK subproblem given by \( e\,^{\hat{\xi_1}\,{\theta_1}} \cdot e\,^{\hat{\xi_2}\,{\theta_2}} \cdot p = k \) (consecutive translation screws to a point, see [4]).

Constructor & Destructor Documentation

◆ PardosGotorTwo()

PardosGotorTwo::PardosGotorTwo ( int  id1,
int  id2,
const MatrixExponential exp1,
const MatrixExponential exp2,
const KDL::Vector &  p 
)
Parameters
id1Zero-based joint id of the first product of exponentials (POE) term.
id2Zero-based joint id of the second POE term.
exp1First POE term.
exp2Second POE term.
pCharacteristic point.

Member Function Documentation

◆ solve()

bool PardosGotorTwo::solve ( const KDL::Frame &  rhs,
const KDL::Frame &  pointTransform,
Solutions solutions 
) const
overridevirtual

Given the product of exponentials (POE) formula \( \prod_i e\,^{\hat{\xi}_i\,{\theta_i}} \cdot H_{ST}(0) = H_{ST}(\theta) \) , , invariant and known terms are rearranged to the right side (rhs) as follows:

\[ \prod_{i=j}^{j+k} e\,^{\hat{\xi}_i\,{\theta_i}} = \left [ \prod_{i=1}^{j-1} e\,^{\hat{\xi}_i\,{\theta_i}} \right ]^{-1} \cdot H_{ST}(\theta) \cdot \left [ H_{ST}(0) \right ]^{-1} \cdot \left [ \prod_{i=j+k+1}^{N} e\,^{\hat{\xi}_i\,{\theta_i}} \right ]^{-1} \]

where \( j = \{1, 2, ..., N\}, k = \{1, 2, ..., N-1\}, 1 <= j+k <= N \) .

Given \( N \) terms in the POE formula, \( j \) of which are unknowns, any characteristic point \( p \) postmultiplying this expression could be rewritten as \( p' \) per:

\[ \prod_{i=1}^j e\,^{\hat{\xi}_i\,{\theta_i}} \cdot \prod_{i=j+1}^N e\,^{\hat{\xi}_i\,{\theta_i}} \cdot p = \prod_{i=1}^j e\,^{\hat{\xi}_i\,{\theta_i}} \cdot p' \]

where pointTransform is the transformation matrix that produces \( p' \) from \( p \) .

Parameters
rhsRight-hand side of the POE formula prior to being applied to the right-hand side of this subproblem.
pointTransformTransformation frame applied to the first (and perhaps only) characteristic point of this subproblem.
solutionsOutput vector of local solutions.
Returns
True if all solutions are reachable, false otherwise.

Implements roboticslab::ScrewTheoryIkSubproblem.


The documentation for this class was generated from the following files: