Skip to content

Dynamic Information#

TEO global dynamic information.

This file contains the center of mass of the whole robot in the initial home position. For individual CoM information go here: .

All the information presented here was calculated using SolidWorks and tuned to the real robot.

Mass = 55900.00 g

Volume = 48633056.11 mm³

Center of mass: ( millimeters )

X = 8.67

Y = -0.03

Z = 14.06

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

 Ix = ( 0.02,  0.00,  1.00)     Px = 2282209291.83

 Iy = ( 0.00, -1.00,  0.00)     Py = 13043664521.24

 Iz = ( 1.00,  0.00, -0.02)     Pz = 15102428756.37

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 15098875242.10    Lxy = -827254.57    Lxz = 213401208.45

Lyx = -827254.57    Lyy = 13043664787.39    Lyz = -762897.83

Lzx = 213401208.45  Lzy = -762897.83    Lzz = 2285762539.95

AxialNeck#

Mass = 1000.00 g

Volume = 298647.65 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

 Ix = ( 0.00,  0.00,  1.00)     Px = 528125.00

 Iy = ( 0.00, -1.00,  0.00)     Py = 939062.50

 Iz = ( 1.00,  0.00,  0.00)     Pz = 939062.50

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 939062.50     Lxy = 0.00      Lxz = 0.00

Lyx = 0.00      Lyy = 939062.50     Lyz = 0.00

Lzx = 0.00      Lzy = 0.00      Lzz = 528125.00

FrontalNeck#

Mass = 2000.00 g

Volume = 3869318.16 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 1.00,  0.00,  0.02)      Px = 7598184.97

Iy = ( 0.00,  1.00,  0.00)      Py = 8325272.78

Iz = (-0.02,  0.00,  1.00)      Pz = 11404600.84

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 7599321.84    Lxy = 5.83      Lxz = 65773.25

Lyx = 5.83      Lyy = 8325272.78    Lyz = -7.43

Lzx = 65773.25      Lzy = -7.43     Lzz = 11403463.96

TRUNK#

FrontalWaist#

Mass = 14235.45 g

Volume = 14791096.67 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.00, -1.00, -0.01)      Px = 126525199.05

Iy = (-0.16,  0.01, -0.99)      Py = 261470522.58

Iz = ( 0.99,  0.00, -0.16)      Pz = 337560229.11

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 335665140.35  Lxy = 162126.65     Lxz = 11858220.70

Lyx = 162126.65     Lyy = 126531585.32  Lyz = 914091.01

Lzx = 11858220.70   Lzy = 914091.01     Lzz = 263359225.06

AxialWaist#

Mass = 1000.00 g

Volume = 141815.56 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.00, -1.00,  0.01)      Px = 899709.63

Iy = (-0.06, -0.01, -1.00)      Py = 1470022.93

Iz = ( 1.00,  0.00, -0.06)      Pz = 1979333.10

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 1977587.12    Lxy = 2056.44       Lxz = 29730.11

Lyx = 2056.44       Lyy = 899729.49     Lyz = -3073.94

Lzx = 29730.11      Lzy = -3073.94      Lzz = 1471749.05

RootWaist#

Mass = 2500.00 g

Volume = 1359273.48 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.00, -1.00,  0.00)      Px = 17354342.61

Iy = ( 1.00,  0.00,  0.02)      Py = 38526911.34

Iz = (-0.02,  0.00,  1.00)      Pz = 53235490.34

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 38530767.35   Lxy = -134.69       Lxz = 238121.10

Lyx = -134.69       Lyy = 17354342.61   Lyz = -0.48

Lzx = 238121.10     Lzy = -0.48     Lzz = 53231634.32

RIGHT ARM#

RightFrontalShoulder#

Mass = 2000.00 g

Volume = 516104.81 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = (-0.04, -0.99,  0.14)      Px = 2084655.68

Iy = ( 0.00, -0.14, -0.99)      Py = 4132399.01

Iz = ( 1.00, -0.04,  0.00)      Pz = 4230179.01

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 4226791.05    Lxy = 84382.30      Lxz = -11698.91

Lyx = 84382.30      Lyy = 2127281.33    Lyz = -280493.15

Lzx = -11698.91     Lzy = -280493.15    Lzz = 4093161.32

RightSagittalShoulder#

Mass = 1000.00 g

Volume = 112019.37 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = (-0.37,  0.15,  0.91)      Px = 1057898.69

Iy = (-0.93,  0.00, -0.38)      Py = 1698826.58

Iz = (-0.06, -0.99,  0.14)      Pz = 2215515.46

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 1610931.66    Lxy = -69037.90     Lxz = -214886.06

Lyx = -69037.90     Lyy = 2187775.81    Lyz = 163005.40

Lzx = -214886.06    Lzy = 163005.40     Lzz = 1173533.26

RightAxialShoulder#

Mass = 1000.00 g

Volume = 667903.29 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.00, -0.01,  1.00)      Px = 611538.52

Iy = ( 0.00, -1.00, -0.01)      Py = 6741891.13

Iz = ( 1.00,  0.00,  0.00)      Pz = 6925108.26

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 6925108.26    Lxy = 0.00      Lxz = 0.00

Lyx = 0.00      Lyy = 6741634.14    Lyz = -39690.86

Lzx = 0.00      Lzy = -39690.86     Lzz = 611795.51

RightFrontalElbow#

Mass = 1000.00 g

Volume = 521543.08 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.00,  0.00,  1.00)      Px = 446024.47

Iy = (-1.00,  0.00,  0.00)      Py = 2590028.58

Iz = ( 0.00, -1.00,  0.00)      Pz = 2623069.51

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 2590028.58    Lxy = 0.00      Lxz = 0.00

Lyx = 0.00      Lyy = 2623069.51    Lyz = 0.00

Lzx = 0.00      Lzy = 0.00      Lzz = 446024.47

RightAxialWrist#

Mass = 631.49 g

Volume = 40919.54 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = (-0.03,  0.04,  1.00)      Px = 326150.78

Iy = ( 0.11, -0.99,  0.04)      Py = 612149.05

Iz = ( 0.99,  0.11,  0.03)      Pz = 702918.54

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 701463.31     Lxy = -10454.91     Lxz = -10855.70

Lyx = -10454.91     Lyy = 612806.24     Lyz = 11471.10

Lzx = -10855.70     Lzy = 11471.10      Lzz = 326948.83

RightFrontalWrist#

Mass = 1170.00 g

Volume = 759343.98 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.03,  0.00,  1.00)      Px = 880205.15

Iy = (-1.00, -0.03,  0.03)      Py = 5332908.02

Iz = ( 0.02, -1.00,  0.00)      Pz = 5345304.27

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 5329956.56    Lxy = 101.85        Lxz = 114750.55

Lyx = 101.85        Lyy = 5345281.96    Lyz = -8070.00

Lzx = 114750.55     Lzy = -8070.00      Lzz = 883178.92

LEFT ARM#

LeftFrontalShoulder#

Mass = 2000.00 g

Volume = 516104.81 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.04, -0.99, -0.14)      Px = 2084628.91

Iy = ( 0.00,  0.14, -0.99)      Py = 4132456.63

Iz = ( 1.00,  0.04,  0.00)      Pz = 4230264.79

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 4226791.05    Lxy = -85460.30     Lxz = -11670.89

Lyx = -85460.30     Lyy = 2127339.64    Lyz = 280493.15

Lzx = -11670.89     Lzy = 280493.15     Lzz = 4093219.64

LeftSagittalShoulder#

Mass (user-overridden) = 1000.00 g

Volume = 112020.11 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = (-0.37, -0.15,  0.91)      Px = 1057896.04

Iy = (-0.93,  0.00, -0.38)      Py = 1698815.91

Iz = ( 0.06, -0.99, -0.14)      Pz = 2215507.57

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 1610920.63    Lxy = 69037.63      Lxz = -214884.85

Lyx = 69037.63      Lyy = 2187768.28    Lyz = -163003.88

Lzx = -214884.85    Lzy = -163003.88    Lzz = 1173530.62

LeftAxialShoulder#

Mass properties of selected components

Mass = 1000.00 g

Volume = 667903.29 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.00,  0.01,  1.00)      Px = 611538.52

Iy = ( 0.00, -1.00,  0.01)      Py = 6741891.13

Iz = ( 1.00,  0.00,  0.00)      Pz = 6925108.26

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 6925108.26    Lxy = 0.00      Lxz = 0.00

Lyx = 0.00      Lyy = 6741634.14    Lyz = 39690.86

Lzx = 0.00      Lzy = 39690.86      Lzz = 611795.51

LeftFrontalElbow#

Mass = 1000.00 g

Volume = 521543.08 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.00,  0.00,  1.00)      Px = 446024.47

Iy = (-1.00,  0.00,  0.00)      Py = 2590028.58

Iz = ( 0.00, -1.00,  0.00)      Pz = 2623069.51

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 2590028.58    Lxy = 0.00      Lxz = 0.00

Lyx = 0.00      Lyy = 2623069.51    Lyz = 0.00

Lzx = 0.00      Lzy = 0.00      Lzz = 446024.47

LeftAxialWrist#

Mass = 631.49 g

Volume = 40919.54 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = (-0.03,  0.04,  1.00)      Px = 326150.78

Iy = ( 0.11, -0.99,  0.04)      Py = 612149.05

Iz = ( 0.99,  0.11,  0.03)      Pz = 702918.54

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 701463.31     Lxy = -10454.91     Lxz = -10855.70

Lyx = -10454.91     Lyy = 612806.24     Lyz = 11471.10

Lzx = -10855.70     Lzy = 11471.10      Lzz = 326948.83

LeftFrontalWrist#

Mass = 1170.00 g

Volume = 759343.98 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.02,  0.00,  1.00)      Px = 880205.15

Iy = (-1.00, -0.03,  0.02)      Py = 5332908.02

Iz = ( 0.02, -1.00,  0.00)      Pz = 5345304.27

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 5330646.84    Lxy = 127.73        Lxz = 100487.37

Lyx = 127.73        Lyy = 5345281.96    Lyz = -8069.63

Lzx = 100487.37     Lzy = -8069.63      Lzz = 882488.65

RIGHT LEG#

RightAxialHip#

Mass = 849.45 g

Volume = 185143.45 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 1.00,  0.00,  0.02)      Px = 1564158.65

Iy = (-0.02,  0.00,  1.00)      Py = 1706392.72

Iz = ( 0.00, -1.00,  0.00)      Pz = 2645088.53

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 1564202.47    Lxy = 0.00      Lxz = 2496.11

Lyx = 0.00      Lyy = 2645088.53    Lyz = 0.00

Lzx = 2496.11       Lzy = 0.00      Lzz = 1706348.90

RightSagittalHip#

Mass = 1454.59 g

Volume = 357656.76 mm³ Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.01, -1.00,  0.00)      Px = 1191564.94

Iy = ( 1.00,  0.01,  0.00)      Py = 1545840.34

Iz = ( 0.00,  0.00,  1.00)      Pz = 2270481.60

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 1545815.41    Lxy = -2971.75      Lxz = -4.07

Lyx = -2971.75      Lyy = 1191589.87    Lyz = 9.16

Lzx = -4.07     Lzy = 9.16      Lzz = 2270481.60

RightFrontalHip#

Mass = 1891.52 g

Volume = 5587643.87 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = (-0.06,  0.00,  1.00)      Px = 7447846.66

Iy = (-1.00,  0.00, -0.06)      Py = 15103348.97

Iz = ( 0.00, -1.00,  0.00)      Pz = 15112043.87

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 15077735.36   Lxy = 0.00      Lxz = -442073.53

Lyx = 0.00      Lyy = 15112043.87   Lyz = 0.00

Lzx = -442073.53    Lzy = 0.00      Lzz = 7473460.27

RightFrontalKnee#

Mass = 1948.24 g

Volume = 4141636.01 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.00,  0.00,  1.00)      Px = 3843635.20

Iy = ( 0.00, -1.00,  0.00)      Py = 21411108.92

Iz = ( 1.00,  0.00,  0.00)      Pz = 21861710.56

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 21861710.01   Lxy = 0.00      Lxz = 3157.06

Lyx = 0.00      Lyy = 21411108.92   Lyz = 0.00

Lzx = 3157.06       Lzy = 0.00      Lzz = 3843635.76

RightFrontalAnkle#

Mass = 1503.59 g

Volume = 364314.92 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 1.00,  0.04,  0.00)      Px = 1395246.39

Iy = (-0.04,  1.00,  0.00)      Py = 1589600.30

Iz = ( 0.00,  0.00,  1.00)      Pz = 2418656.52

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 1395488.46    Lxy = 6854.86       Lxz = 0.01

Lyx = 6854.86       Lyy = 1589358.23    Lyz = 0.00

Lzx = 0.01      Lzy = 0.00      Lzz = 2418656.52

RightSagittalAnkle#

Mass = 3133.40 g

Volume = 836243.07 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.96,  0.06, -0.29)      Px = 7156686.84

Iy = ( 0.29, -0.01,  0.96)      Py = 13916875.64

Iz = ( 0.06, -1.00, -0.03)      Pz = 14811538.03

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 7742029.63    Lxy = 455866.32     Lxz = -1851656.76

Lyx = 455866.32     Lyy = 14781323.09   Lyz = -147512.99

Lzx = -1851656.76   Lzy = -147512.99    Lzz = 13361747.79

LEFT LEG#

LeftAxialHip#

Mass = 849.45 g

Volume = 185143.45 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 1.00,  0.00,  0.02)      Px = 1564158.65

Iy = (-0.02,  0.00,  1.00)      Py = 1706392.72

Iz = ( 0.00, -1.00,  0.00)      Pz = 2645088.53

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 1564202.47    Lxy = 0.00      Lxz = 2496.11

Lyx = 0.00      Lyy = 2645088.53    Lyz = 0.00

Lzx = 2496.11       Lzy = 0.00      Lzz = 1706348.90

LeftSagittalHip#

Mass = 1454.59 g

Volume = 357656.76 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.01, -1.00,  0.00)      Px = 1191564.94

Iy = ( 1.00,  0.01,  0.00)      Py = 1545840.34

Iz = ( 0.00,  0.00,  1.00)      Pz = 2270481.60

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 1545815.41    Lxy = -2971.75      Lxz = -4.07

Lyx = -2971.75      Lyy = 1191589.87    Lyz = 9.16

Lzx = -4.07     Lzy = 9.16      Lzz = 2270481.60

LeftFrontalHip#

Mass = 1891.52 g

Volume = 5587643.87 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = (-0.06,  0.00,  1.00)      Px = 7447846.66

Iy = (-1.00,  0.00, -0.06)      Py = 15103348.97

Iz = ( 0.00, -1.00,  0.00)      Pz = 15112043.87

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 15077735.36   Lxy = 0.00      Lxz = -442073.53

Lyx = 0.00      Lyy = 15112043.87   Lyz = 0.00

Lzx = -442073.53    Lzy = 0.00      Lzz = 7473460.27

LeftFrontalKnee#

Mass = 1948.24 g

Volume = 4141636.01 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.00,  0.00,  1.00)      Px = 3843635.20

Iy = ( 0.00, -1.00,  0.00)      Py = 21411108.92

Iz = ( 1.00,  0.00,  0.00)      Pz = 21861710.56

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 21861710.01   Lxy = 0.00      Lxz = 3157.06

Lyx = 0.00      Lyy = 21411108.92   Lyz = 0.00

Lzx = 3157.06       Lzy = 0.00      Lzz = 3843635.76

LeftFrontalAnkle#

Mass = 1503.59 g

Volume = 364099.32 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 1.00, -0.06,  0.00)      Px = 1391550.41

Iy = ( 0.06,  1.00,  0.00)      Py = 1590780.84

Iz = ( 0.00,  0.00,  1.00)      Pz = 2416060.36

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 1392286.60    Lxy = -12088.37     Lxz = 0.01

Lyx = -12088.37     Lyy = 1590044.65    Lyz = 0.01

Lzx = 0.01      Lzy = 0.01      Lzz = 2416060.36

LeftFrontalAnkle#

Mass = 3133.40 g

Volume = 828418.18 mm³

Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.

Ix = ( 0.97, -0.08, -0.24)      Px = 7368906.11

Iy = ( 0.24,  0.04,  0.97)      Py = 13515459.01

Iz = (-0.06, -1.00,  0.06)      Pz = 14635257.08

Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.

Lxx = 7763728.47    Lxy = -524257.51    Lxz = -1424772.26

Lyx = -524257.51    Lyy = 14591640.60   Lyz = 173925.09

Lzx = -1424772.26   Lzy = 173925.09     Lzz = 13164253.12