Dynamic Information#
TEO global dynamic information.
This file contains the center of mass of the whole robot in the initial home position. For individual CoM information go here:
All the information presented here was calculated using SolidWorks and tuned to the real robot.
Mass = 55900.00 g
Volume = 48633056.11 mm³
Center of mass: ( millimeters )
X = 8.67
Y = -0.03
Z = 14.06
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.02, 0.00, 1.00) Px = 2282209291.83
Iy = ( 0.00, -1.00, 0.00) Py = 13043664521.24
Iz = ( 1.00, 0.00, -0.02) Pz = 15102428756.37
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 15098875242.10 Lxy = -827254.57 Lxz = 213401208.45
Lyx = -827254.57 Lyy = 13043664787.39 Lyz = -762897.83
Lzx = 213401208.45 Lzy = -762897.83 Lzz = 2285762539.95
HEAD#
AxialNeck#
Mass = 1000.00 g
Volume = 298647.65 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, 0.00, 1.00) Px = 528125.00
Iy = ( 0.00, -1.00, 0.00) Py = 939062.50
Iz = ( 1.00, 0.00, 0.00) Pz = 939062.50
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 939062.50 Lxy = 0.00 Lxz = 0.00
Lyx = 0.00 Lyy = 939062.50 Lyz = 0.00
Lzx = 0.00 Lzy = 0.00 Lzz = 528125.00
FrontalNeck#
Mass = 2000.00 g
Volume = 3869318.16 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 1.00, 0.00, 0.02) Px = 7598184.97
Iy = ( 0.00, 1.00, 0.00) Py = 8325272.78
Iz = (-0.02, 0.00, 1.00) Pz = 11404600.84
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 7599321.84 Lxy = 5.83 Lxz = 65773.25
Lyx = 5.83 Lyy = 8325272.78 Lyz = -7.43
Lzx = 65773.25 Lzy = -7.43 Lzz = 11403463.96
TRUNK#
FrontalWaist#
Mass = 14235.45 g
Volume = 14791096.67 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, -1.00, -0.01) Px = 126525199.05
Iy = (-0.16, 0.01, -0.99) Py = 261470522.58
Iz = ( 0.99, 0.00, -0.16) Pz = 337560229.11
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 335665140.35 Lxy = 162126.65 Lxz = 11858220.70
Lyx = 162126.65 Lyy = 126531585.32 Lyz = 914091.01
Lzx = 11858220.70 Lzy = 914091.01 Lzz = 263359225.06
AxialWaist#
Mass = 1000.00 g
Volume = 141815.56 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, -1.00, 0.01) Px = 899709.63
Iy = (-0.06, -0.01, -1.00) Py = 1470022.93
Iz = ( 1.00, 0.00, -0.06) Pz = 1979333.10
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 1977587.12 Lxy = 2056.44 Lxz = 29730.11
Lyx = 2056.44 Lyy = 899729.49 Lyz = -3073.94
Lzx = 29730.11 Lzy = -3073.94 Lzz = 1471749.05
RootWaist#
Mass = 2500.00 g
Volume = 1359273.48 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, -1.00, 0.00) Px = 17354342.61
Iy = ( 1.00, 0.00, 0.02) Py = 38526911.34
Iz = (-0.02, 0.00, 1.00) Pz = 53235490.34
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 38530767.35 Lxy = -134.69 Lxz = 238121.10
Lyx = -134.69 Lyy = 17354342.61 Lyz = -0.48
Lzx = 238121.10 Lzy = -0.48 Lzz = 53231634.32
RIGHT ARM#
RightFrontalShoulder#
Mass = 2000.00 g
Volume = 516104.81 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = (-0.04, -0.99, 0.14) Px = 2084655.68
Iy = ( 0.00, -0.14, -0.99) Py = 4132399.01
Iz = ( 1.00, -0.04, 0.00) Pz = 4230179.01
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 4226791.05 Lxy = 84382.30 Lxz = -11698.91
Lyx = 84382.30 Lyy = 2127281.33 Lyz = -280493.15
Lzx = -11698.91 Lzy = -280493.15 Lzz = 4093161.32
RightSagittalShoulder#
Mass = 1000.00 g
Volume = 112019.37 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = (-0.37, 0.15, 0.91) Px = 1057898.69
Iy = (-0.93, 0.00, -0.38) Py = 1698826.58
Iz = (-0.06, -0.99, 0.14) Pz = 2215515.46
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 1610931.66 Lxy = -69037.90 Lxz = -214886.06
Lyx = -69037.90 Lyy = 2187775.81 Lyz = 163005.40
Lzx = -214886.06 Lzy = 163005.40 Lzz = 1173533.26
RightAxialShoulder#
Mass = 1000.00 g
Volume = 667903.29 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, -0.01, 1.00) Px = 611538.52
Iy = ( 0.00, -1.00, -0.01) Py = 6741891.13
Iz = ( 1.00, 0.00, 0.00) Pz = 6925108.26
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 6925108.26 Lxy = 0.00 Lxz = 0.00
Lyx = 0.00 Lyy = 6741634.14 Lyz = -39690.86
Lzx = 0.00 Lzy = -39690.86 Lzz = 611795.51
RightFrontalElbow#
Mass = 1000.00 g
Volume = 521543.08 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, 0.00, 1.00) Px = 446024.47
Iy = (-1.00, 0.00, 0.00) Py = 2590028.58
Iz = ( 0.00, -1.00, 0.00) Pz = 2623069.51
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 2590028.58 Lxy = 0.00 Lxz = 0.00
Lyx = 0.00 Lyy = 2623069.51 Lyz = 0.00
Lzx = 0.00 Lzy = 0.00 Lzz = 446024.47
RightAxialWrist#
Mass = 631.49 g
Volume = 40919.54 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = (-0.03, 0.04, 1.00) Px = 326150.78
Iy = ( 0.11, -0.99, 0.04) Py = 612149.05
Iz = ( 0.99, 0.11, 0.03) Pz = 702918.54
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 701463.31 Lxy = -10454.91 Lxz = -10855.70
Lyx = -10454.91 Lyy = 612806.24 Lyz = 11471.10
Lzx = -10855.70 Lzy = 11471.10 Lzz = 326948.83
RightFrontalWrist#
Mass = 1170.00 g
Volume = 759343.98 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.03, 0.00, 1.00) Px = 880205.15
Iy = (-1.00, -0.03, 0.03) Py = 5332908.02
Iz = ( 0.02, -1.00, 0.00) Pz = 5345304.27
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 5329956.56 Lxy = 101.85 Lxz = 114750.55
Lyx = 101.85 Lyy = 5345281.96 Lyz = -8070.00
Lzx = 114750.55 Lzy = -8070.00 Lzz = 883178.92
LEFT ARM#
LeftFrontalShoulder#
Mass = 2000.00 g
Volume = 516104.81 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.04, -0.99, -0.14) Px = 2084628.91
Iy = ( 0.00, 0.14, -0.99) Py = 4132456.63
Iz = ( 1.00, 0.04, 0.00) Pz = 4230264.79
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 4226791.05 Lxy = -85460.30 Lxz = -11670.89
Lyx = -85460.30 Lyy = 2127339.64 Lyz = 280493.15
Lzx = -11670.89 Lzy = 280493.15 Lzz = 4093219.64
LeftSagittalShoulder#
Mass (user-overridden) = 1000.00 g
Volume = 112020.11 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = (-0.37, -0.15, 0.91) Px = 1057896.04
Iy = (-0.93, 0.00, -0.38) Py = 1698815.91
Iz = ( 0.06, -0.99, -0.14) Pz = 2215507.57
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 1610920.63 Lxy = 69037.63 Lxz = -214884.85
Lyx = 69037.63 Lyy = 2187768.28 Lyz = -163003.88
Lzx = -214884.85 Lzy = -163003.88 Lzz = 1173530.62
LeftAxialShoulder#
Mass properties of selected components
Mass = 1000.00 g
Volume = 667903.29 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, 0.01, 1.00) Px = 611538.52
Iy = ( 0.00, -1.00, 0.01) Py = 6741891.13
Iz = ( 1.00, 0.00, 0.00) Pz = 6925108.26
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 6925108.26 Lxy = 0.00 Lxz = 0.00
Lyx = 0.00 Lyy = 6741634.14 Lyz = 39690.86
Lzx = 0.00 Lzy = 39690.86 Lzz = 611795.51
LeftFrontalElbow#
Mass = 1000.00 g
Volume = 521543.08 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, 0.00, 1.00) Px = 446024.47
Iy = (-1.00, 0.00, 0.00) Py = 2590028.58
Iz = ( 0.00, -1.00, 0.00) Pz = 2623069.51
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 2590028.58 Lxy = 0.00 Lxz = 0.00
Lyx = 0.00 Lyy = 2623069.51 Lyz = 0.00
Lzx = 0.00 Lzy = 0.00 Lzz = 446024.47
LeftAxialWrist#
Mass = 631.49 g
Volume = 40919.54 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = (-0.03, 0.04, 1.00) Px = 326150.78
Iy = ( 0.11, -0.99, 0.04) Py = 612149.05
Iz = ( 0.99, 0.11, 0.03) Pz = 702918.54
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 701463.31 Lxy = -10454.91 Lxz = -10855.70
Lyx = -10454.91 Lyy = 612806.24 Lyz = 11471.10
Lzx = -10855.70 Lzy = 11471.10 Lzz = 326948.83
LeftFrontalWrist#
Mass = 1170.00 g
Volume = 759343.98 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.02, 0.00, 1.00) Px = 880205.15
Iy = (-1.00, -0.03, 0.02) Py = 5332908.02
Iz = ( 0.02, -1.00, 0.00) Pz = 5345304.27
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 5330646.84 Lxy = 127.73 Lxz = 100487.37
Lyx = 127.73 Lyy = 5345281.96 Lyz = -8069.63
Lzx = 100487.37 Lzy = -8069.63 Lzz = 882488.65
RIGHT LEG#
RightAxialHip#
Mass = 849.45 g
Volume = 185143.45 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 1.00, 0.00, 0.02) Px = 1564158.65
Iy = (-0.02, 0.00, 1.00) Py = 1706392.72
Iz = ( 0.00, -1.00, 0.00) Pz = 2645088.53
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 1564202.47 Lxy = 0.00 Lxz = 2496.11
Lyx = 0.00 Lyy = 2645088.53 Lyz = 0.00
Lzx = 2496.11 Lzy = 0.00 Lzz = 1706348.90
RightSagittalHip#
Mass = 1454.59 g
Volume = 357656.76 mm³ Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.01, -1.00, 0.00) Px = 1191564.94
Iy = ( 1.00, 0.01, 0.00) Py = 1545840.34
Iz = ( 0.00, 0.00, 1.00) Pz = 2270481.60
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 1545815.41 Lxy = -2971.75 Lxz = -4.07
Lyx = -2971.75 Lyy = 1191589.87 Lyz = 9.16
Lzx = -4.07 Lzy = 9.16 Lzz = 2270481.60
RightFrontalHip#
Mass = 1891.52 g
Volume = 5587643.87 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = (-0.06, 0.00, 1.00) Px = 7447846.66
Iy = (-1.00, 0.00, -0.06) Py = 15103348.97
Iz = ( 0.00, -1.00, 0.00) Pz = 15112043.87
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 15077735.36 Lxy = 0.00 Lxz = -442073.53
Lyx = 0.00 Lyy = 15112043.87 Lyz = 0.00
Lzx = -442073.53 Lzy = 0.00 Lzz = 7473460.27
RightFrontalKnee#
Mass = 1948.24 g
Volume = 4141636.01 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, 0.00, 1.00) Px = 3843635.20
Iy = ( 0.00, -1.00, 0.00) Py = 21411108.92
Iz = ( 1.00, 0.00, 0.00) Pz = 21861710.56
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 21861710.01 Lxy = 0.00 Lxz = 3157.06
Lyx = 0.00 Lyy = 21411108.92 Lyz = 0.00
Lzx = 3157.06 Lzy = 0.00 Lzz = 3843635.76
RightFrontalAnkle#
Mass = 1503.59 g
Volume = 364314.92 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 1.00, 0.04, 0.00) Px = 1395246.39
Iy = (-0.04, 1.00, 0.00) Py = 1589600.30
Iz = ( 0.00, 0.00, 1.00) Pz = 2418656.52
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 1395488.46 Lxy = 6854.86 Lxz = 0.01
Lyx = 6854.86 Lyy = 1589358.23 Lyz = 0.00
Lzx = 0.01 Lzy = 0.00 Lzz = 2418656.52
RightSagittalAnkle#
Mass = 3133.40 g
Volume = 836243.07 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.96, 0.06, -0.29) Px = 7156686.84
Iy = ( 0.29, -0.01, 0.96) Py = 13916875.64
Iz = ( 0.06, -1.00, -0.03) Pz = 14811538.03
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 7742029.63 Lxy = 455866.32 Lxz = -1851656.76
Lyx = 455866.32 Lyy = 14781323.09 Lyz = -147512.99
Lzx = -1851656.76 Lzy = -147512.99 Lzz = 13361747.79
LEFT LEG#
LeftAxialHip#
Mass = 849.45 g
Volume = 185143.45 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 1.00, 0.00, 0.02) Px = 1564158.65
Iy = (-0.02, 0.00, 1.00) Py = 1706392.72
Iz = ( 0.00, -1.00, 0.00) Pz = 2645088.53
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 1564202.47 Lxy = 0.00 Lxz = 2496.11
Lyx = 0.00 Lyy = 2645088.53 Lyz = 0.00
Lzx = 2496.11 Lzy = 0.00 Lzz = 1706348.90
LeftSagittalHip#
Mass = 1454.59 g
Volume = 357656.76 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.01, -1.00, 0.00) Px = 1191564.94
Iy = ( 1.00, 0.01, 0.00) Py = 1545840.34
Iz = ( 0.00, 0.00, 1.00) Pz = 2270481.60
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 1545815.41 Lxy = -2971.75 Lxz = -4.07
Lyx = -2971.75 Lyy = 1191589.87 Lyz = 9.16
Lzx = -4.07 Lzy = 9.16 Lzz = 2270481.60
LeftFrontalHip#
Mass = 1891.52 g
Volume = 5587643.87 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = (-0.06, 0.00, 1.00) Px = 7447846.66
Iy = (-1.00, 0.00, -0.06) Py = 15103348.97
Iz = ( 0.00, -1.00, 0.00) Pz = 15112043.87
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 15077735.36 Lxy = 0.00 Lxz = -442073.53
Lyx = 0.00 Lyy = 15112043.87 Lyz = 0.00
Lzx = -442073.53 Lzy = 0.00 Lzz = 7473460.27
LeftFrontalKnee#
Mass = 1948.24 g
Volume = 4141636.01 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.00, 0.00, 1.00) Px = 3843635.20
Iy = ( 0.00, -1.00, 0.00) Py = 21411108.92
Iz = ( 1.00, 0.00, 0.00) Pz = 21861710.56
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 21861710.01 Lxy = 0.00 Lxz = 3157.06
Lyx = 0.00 Lyy = 21411108.92 Lyz = 0.00
Lzx = 3157.06 Lzy = 0.00 Lzz = 3843635.76
LeftFrontalAnkle#
Mass = 1503.59 g
Volume = 364099.32 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 1.00, -0.06, 0.00) Px = 1391550.41
Iy = ( 0.06, 1.00, 0.00) Py = 1590780.84
Iz = ( 0.00, 0.00, 1.00) Pz = 2416060.36
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 1392286.60 Lxy = -12088.37 Lxz = 0.01
Lyx = -12088.37 Lyy = 1590044.65 Lyz = 0.01
Lzx = 0.01 Lzy = 0.01 Lzz = 2416060.36
LeftFrontalAnkle#
Mass = 3133.40 g
Volume = 828418.18 mm³
Principal axes of inertia and principal moments of inertia: ( g * mm² ) Taken at the center of mass.
Ix = ( 0.97, -0.08, -0.24) Px = 7368906.11
Iy = ( 0.24, 0.04, 0.97) Py = 13515459.01
Iz = (-0.06, -1.00, 0.06) Pz = 14635257.08
Moments of inertia: ( g * mm² ) Taken at the center of mass and aligned with the output coordinate system.
Lxx = 7763728.47 Lxy = -524257.51 Lxz = -1424772.26
Lyx = -524257.51 Lyy = 14591640.60 Lyz = 173925.09
Lzx = -1424772.26 Lzy = 173925.09 Lzz = 13164253.12